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Benefit to the Program 
 A better physics-based understanding of fracture conductivity 

behavior in shale formations, which leads to:

‒ an improved fracture treatment design

‒ a more effective and economical hydraulic fracturing 

‒ an improved fractured well performance

‒ a reduced environmental impact by reducing water and other materials 

used in fracturing activities

 A systematic experimental study of fracture conductivity in shale oil 

and gas formations, including:

‒ Barnett shale

‒ Fayetteville shale

‒ Marcellus shale

‒ Eagle Ford shale

 Addresses the concerns of conductivity measurement procedures and 

mimics the field conditions for more accurate evaluation of conductivity



Importance of Fracture Conductivity in Shale
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Reservoir Conditions and Frac Design

(USGS Fact S. 2008-3021; Hexion fracline, 2009; Sunday Udoh, 2013; Zhang, 2014; Murex Petro. Corp., 2014; A. Plas Otwe, 2014)
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Project Overview:  
Goals and Objectives

 Build shale baseline frac conductivity database

‒ Rocks: Barnett, Fayetteville, Eagle Ford, Marcellus, Bakken

‒ Fracture: natural fracture, induced fracture; unpropped, propped

‒ Proppant: 100, 40/70, 30/70, 30/50; Predominantly ≤ 0.20 lb/ft2

 Correlate shale frac conductivity with rock properties

‒ Mineralogical: clay-rich shale, carbonate-rich, silica-rich

‒ Mechanical: elastic properties of shale

‒ Structural: fracture orientation and surface roughness

 Investigate the conductivity damage by water

‒ Mineralogical: clay softening

‒ Damage mechanisms
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2. Coat samples 3. Place proppants

4. Mod. API cell 5. Measurement

1. Induce fracture
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Triaxial Compression Test Setup

Triaxial test: 

mechanical 

properties (E, u)

Brinell hardness 

test

profilometer: 

topography
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Marcellus: Downhole Core vs. 

Outcrop Samples
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Mineralogy and Rock Brittleness
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Unpropped Fracture Conductivity 

and Rock Brittleness
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• Higher quartz content 

(silica), smaller grain size

• Rougher fracture surface

• Blocky fracture surface 

fragments

• Higher carbonate/clay 

content with larger grain size

• Flatter fracture surface

• Flat, flaky fracture surface 

fragments
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Unpropped vs. Propped Fracture: 

Fayetteville
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Eagle Ford, Zone B
100 Mesh Sand
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unpropped



Sample Orientation
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Marcellus, Elimsport: Conductivity 
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Marcellus, Allenwood: Conductivity 

(Z = horizontal sample orientation)

(X0 = vertical sample orientation)
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Eagle Ford Outcrop: Lozier Canyon
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Comprehensive Study

 Fracture conductivity, unpropped, propped with 

different size and concentration

 Mechanical property: Young’s Modulus and 

Poisson’s Ratio

 Surface topography

 Brinell hardness

 Brittleness

 Sample orientation
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Conductivity for 100-Mesh

23



Brinell Hardness Number

24



Fracture Conductivity at 6,000 psi vs 

Poisson’s Ratio 
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Magnitude of initial 
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by surface topography
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is controlled by 

mechanical properties
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Water Damage
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Water Damage to Conductivity 

in Shale Formation
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Accomplishments to Date

 A comprehensive experimental database of fracture conductivity in shale oil and 

gas formations, including:

‒ Barnett shale, Fayetteville shale, Marcellus shale, and Eagle Ford shale

 Unpropped and propped fracture conductivity behavior due to:

‒ fracture alignment 

‒ closure stress

‒ rock mechanical properties

‒ mineralogy

‒ fracture orientation

‒ proppant type and concentration

 Water-induced fracture conductivity impairment 
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Summary

 Unpropped natural fracture conductivity is significant and important in 

unconventional reservoir fracturing. It is orders of magnitudes smaller than propped 

conductivity

 Samples obtained from downhole cores tend to have a higher unpropped

conductivity due to a larger amount of debris generated and removed during the 

process of inducing fracture.

 Orientation of samples only has impact on tested conductivity when mechanical 

property is anisotropic. When it does, the conductivity can be an order of magnitude 

smaller

 Surface mechanical properties (Brinell Hardness) and topography (surface area) 

show a direct impact on fracture conductivity, specially unpropped. Higher hardness 

results in a higher conductivity.

 Effect of mineralogy on conductivity in terms of Brittleness showed that higher 

brittleness yields higher conductivity.
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Organization Chart and 

Industrial Collaboration 
 Two faculty:

‒ Professor Ding Zhu

‒ Professor Dan Hill

 9 MS students with thesis

 4 PhD students with dissertation

 Industrial support

 Southwestern Energy

 Pioneer

 Hess

 StimLab

 Carbo Ceramics



Gantt Chart
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