CONDUCTIVITY OF COMPLEX FRACTURING IN UNCONVENTIONAL SHALE RESERVOIRS

Project Number (11122-07)

Pls: Ding Zhu and Dan Hill Texas A&M University Petroleum Engineering Department

U.S. Department of Energy

National Energy Technology Laboratory

Mastering the Subsurface Through Technology, Innovation and Collaboration: Carbon Storage and Oil and Natural Gas Technologies Review Meeting

August 16-18, 2016

Benefit to the Program

A better physics-based understanding of fracture conductivity behavior in shale formations, which leads to:

- an improved fracture treatment design
- a more effective and economical hydraulic fracturing
- an improved fractured well performance
- a reduced environmental impact by reducing water and other materials used in fracturing activities
- > A systematic experimental study of fracture conductivity in shale oil and gas formations, including:
- Barnett shale
- Fayetteville shale
- Marcellus shale
- Eagle Ford shale

Addresses the concerns of conductivity measurement procedures and mimics the field conditions for more accurate evaluation of conductivity

Importance of Fracture Conductivity in Shale

Reservoir Conditions and Frac Design

Properties	Barnett shale	Fayetteville shale	Eagle Ford shale	Marcellus shale	(Bakken shale)
True Vertical Depth (ft)	6,000 ~ 8,500	1,500 ~ 6,500	5,000 ~ 14,000	4,000 ~ 8,000	7,000 ~ 11,000
Closure stress gradient (psi/ft)	0.61 ~ 0.73	0.70 ~ 0.80	0.70 ~ 0.95	0.67 ~ 0.76	0.48 ~ 0.80
Effective closure stress (psi)	3,000 ~ 5,500	1,000 ~ 5,000	2,000 ~ 8,000	2,500 ~ 6,000	5,500 ~ 9,500
Hydrocarbon	Gas	Gas	Condensate, Oil	Gas, Condensate	Oil, Gas, NGL
Fracturing design	Water frac	Water frac	Gelled frac, Hybrid, High-way	Water frac, Foam	Water frac, Crosslinked gel, Hybrid
Proppant size (mesh)	100, 40/70, 30/50	100, 30/70	40/70, 30/50, 20/40,	100, 40/70, 30/50	100, 40/70, 30/50, 20/40, 16/20
Typical max. proppant concentration (ppga)	3.5	2	4	4	5
Average concentration (ppga)	0.6	0.6	1.2	1.2	1.7

(USGS Fact S. 2008-3021; Hexion fracline, 2009; Sunday Udoh, 2013; Zhang, 2014; Murex Petro. Corp., 2014; A. Plas Otwe, 2014)

Project Overview: Goals and Objectives

- Build shale baseline frac conductivity database
 - Rocks: Barnett, Fayetteville, Eagle Ford, Marcellus, Bakken
 - Fracture: natural fracture, induced fracture; unpropped, propped
 - Proppant: 100, 40/70, 30/70, 30/50; Predominantly \leq 0.20 lb/ft²
- Correlate shale frac conductivity with rock properties
 - Mineralogical: clay-rich shale, carbonate-rich, silica-rich
 - Mechanical: elastic properties of shale
 - Structural: fracture orientation and surface roughness
- Investigate the conductivity damage by water
 - Mineralogical: clay softening
 - Damage mechanisms

Conductivity Experimental Procedure

ENGINEERING

TEXAS A&M UNIVERSITY

Triaxial Compression Test Setup

Triaxial test: mechanical properties (Ε, υ)

Brinell hardness test

profilometer: topography

Barnett: Unpropped Natural Fracture

TEXAS A&M UNIVERSITY

Barnett: Unpropped Aligned Fracture

TEXAS A&M UNIVERSITY

Marcellus: Downhole Core vs. Outcrop Samples

Unpropped Aligned Fracture

Mineralogy and Rock Brittleness

Unpropped Fracture Conductivity and Rock Brittleness

A&M UNIVERSITY

Conductivity Difference Explained

TEXAS A&M UNIVERSITY

Unpropped vs. Propped Fracture: Fayetteville

Eagle Ford, Zone B

100 Mesh Sand

Closure Stress (psi)

Fracture Conductivity (md-ft)

Sample Orientation

Marcellus, Elimsport: Conductivity

E

TEXAS A&M UNIVERSITY

NGIN

Marcellus, Allenwood: Conductivity

Eagle Ford Outcrop: Lozier Canyon

Comprehensive Study

- Fracture conductivity, unpropped, propped with different size and concentration
- Mechanical property: Young's Modulus and Poisson's Ratio
- Surface topography
- Brinell hardness
- Brittleness
- Sample orientation

Conductivity for 100-Mesh

Brinell Hardness Number

Fracture Conductivity at 6,000 psi vs Poisson's Ratio

Brittleness Effect on Conductivity

100 Mesh Sand @ 0.10 lb/ft^2

Unpropped Conductivity Correlation

General Observation

Water Damage

Water Damage to Conductivity in Shale Formation

Accomplishments to Date

- A comprehensive experimental database of fracture conductivity in shale oil and gas formations, including:
 - Barnett shale, Fayetteville shale, Marcellus shale, and Eagle Ford shale
- Unpropped and propped fracture conductivity behavior due to:
 - fracture alignment
 - closure stress
 - rock mechanical properties
 - mineralogy
 - fracture orientation
 - proppant type and concentration
- Water-induced fracture conductivity impairment

Summary

- Unpropped natural fracture conductivity is significant and important in unconventional reservoir fracturing. It is orders of magnitudes smaller than propped conductivity
- Samples obtained from downhole cores tend to have a higher unpropped conductivity due to a larger amount of debris generated and removed during the process of inducing fracture.
- Orientation of samples only has impact on tested conductivity when mechanical property is anisotropic. When it does, the conductivity can be an order of magnitude smaller
- Surface mechanical properties (Brinell Hardness) and topography (surface area) show a direct impact on fracture conductivity, specially unpropped. Higher hardness results in a higher conductivity.
- Effect of mineralogy on conductivity in terms of Brittleness showed that higher brittleness yields higher conductivity.

Organization Chart and Industrial Collaboration

- Two faculty:
 - Professor Ding Zhu
 - Professor Dan Hill
- ➢ 9 MS students with thesis
- 4 PhD students with dissertation
- Industrial support
 - Southwestern Energy
 - Pioneer
 - > Hess
 - StimLab
 - Carbo Ceramics

Gantt Chart

6 months 12 months 18 months 24 months

TASK 1: Project Management Plan (2 months)

TASK 2: Technology Status Assessment (2 months)

TASK 3: Technology Transfer (18 months)

TASK 4: Core sample preparation for Barnett, Fayetteville, Eagle Ford Outcrop and Marcellus (6 months)

TASK 5: Unpropped Fracture Conductivity Testing (18 months)

TASK 6: Unpropped Natural Fracture Conductivity Testing (18 months)

TASK 7: Propped Fracture Conductivity Testing (18 months)

Additional: Recollecting Eagle Ford samples in vertical zones, recollecting Marcellus samples, measuring all samples' rock mechanical properties, testing water effect

TASK 8: Develop Guideline and Final Report (3 months)

NO COST EXTENSION (12 months)

Recollecting Eagle Ford samples in vertical zones (2 months, done) Recollecting Marcellus samples with better integrity (1 month, done) Measuring all samples' rock mechanical properties (12 months, done) Testing water effect (12 months, to be completed by September, 2016) Revisiting report (1 month, to be completed by September, 2016)

Bibliography

- 1. Zhang, J., Kamenov, A., Zhu, D., and Hill, A.D., Laboratory Measurement of Hydraulic Fracture Conductivities in the Barnett Shale, SPE Paper 163839, presented at the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, 2013.
- Ouyang, L., Zhu, D., and Hill, A.D., Theoretical and Numerical Simulation of Herschel-Bulkley Fluid Flow in Propped Fractures, IPTC 17011, presented at the SPE International Petroleum Technology Conference, Beijing, China, March 26-28, 2013.
- 3. Zhang, J., Zhu, D., and Hill, A.D., Propped Fracture Conductivity in Shales, OMAE 2013-11603, presented at the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering, Nates, France, June 9-14 2013.
- 4. Zhang, J., Hill A. D., and Zhu, D. :Experimental and Numerical Studies of Reduced Fracture Conductivity due to Proppant Embedment in Shale Reservoir, SPE paper 170775 prepared for presentation at the SPE Annual Technical Conference and Exhibition held in Amsterdam, The Netherlands, 27–29 October 2014.
- 5. Briggs, K., Hill, A. D., Zhu, D., and Olsen, K.: The Relationship between Rock Properties and Fracture Conductivity in the Fayetteville Shale, SPE paper 170790 prepared for presentation at the SPE Annual Technical Conference and Exhibition held in Amsterdam, The Netherlands, 27–29 October 2014.
- 6. Jansen, T, Zhu, D. and Hill, A. D.: The Effect of Rock Mechanical Properties on Fracture Conductivity for Shale Formations, SPE paper 170337 prepared for the 2015 SPE Hydraulic Fracturing Technology Conference, Woodlands, Texas, January 2015.
- McGinley, M., Zhu, D. and Hill, A. D., The Effects of Fracture Orientation and Elastic Properties on Hydraulic Fracture Conductivity, SPE paper 174870 accepted for 2015 SPE Annual Technical Conference and Exhibition to be held 28 – 30 September, 2015 in Houston, TX, USA.
- 8. P. Perez Pena, D. Zhu, and A. D. Hill : The Effect of Rock Properties on Fracture Conductivity in the Marcellus Shale, SPE-181867, Asia Pacific Hydraulic Fracture Conference, August 2016, Beijing, China

QUESTIONS?

